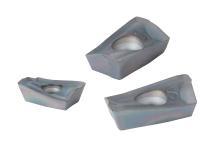


MECHT


Helical End Mill for Titanium Alloy Machining

New Helical End Mill Design Added to the MECH Product Line

Unique Design for Stable Titanium Alloy Milling
Insert combination for increased stability
Special holder design for increased reliability
Coolant holes for Excellent chip evacuation

Longer Tool Life with Low-resistance JS Chipbreaker and Tough PVD Coating Technology

MECHT

Helical End Mill for Titanium Alloy Machining

Insert Size Combination Improves Roughing Capabilities
Improved Coolant Hole Maintains Stable Machining and Long Tool Life

Developed to Reduce Chattering and Chip Recutting Issues

Unique Insert Combination

Larger bottom inserts are positioned to handle larger cutting forces (excluding ø32mm)

Increased fracture resistance for stable machining

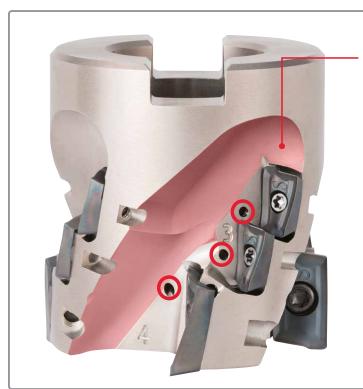
New Design for Higher Reliability

Bottom inserts are held in place by double-faced contacts

Wide Holding Surface

Holding Surface 2

Additional Hold in the Axial Direction


Bore Dia.

Larger bore diameter improves fastening power and reduces chattering ø50mm Cutter with a ø27mm Bore (Conventional Bore : ø22mm)

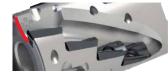
Toolholder Hardness Hardened 15% more than conventional holders

Toolholder Spec Custom ordering available

(Custom number of inserts and stages)

Excellent Chip Evacuation

New flute design


Large, smooth flutes prevent chip clogging

MECHT (ø50mm-4T 3 Stages)

Conventional (ø50mm-4T 4 Stages)

Large flute

Smooth design

All inserts have coolant holes

Optimized hole diameter controls flow amount and pressure

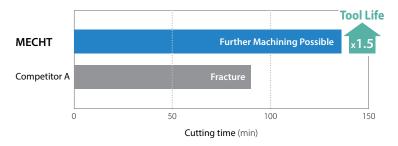
Smooth chip evacuation as well as superior cooling of the cutting edge

Longer Tool Life with Low-resistance JS Chipbreaker and Tough PVD Coating

Low Cutting Force

JS Chipbreaker

Heat at the cutting edge is suppressed due to sharp cutting performance extending tool life **Greater Toughness**


PR1535

Fracture resistant with a tough substrate and high heat-resistant MEGACOAT NANO coating technology

Tool Life Comparison (Internal Evaluation)

MECHT showed good cutting edge condition with 50% longer tool life than competitor B.

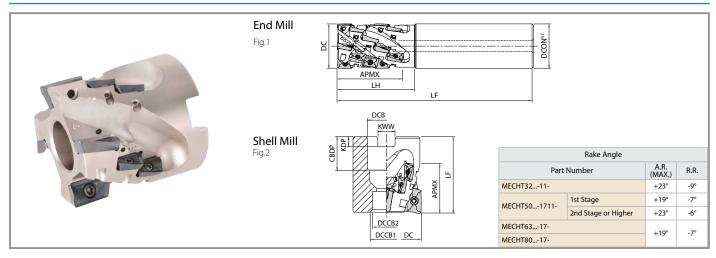
Cutting Edge after Machining 50 min

Cutting Conditions: Vc = 130 sfm, D.O.C. × ae = 1.692" × 0.787", fz = 0.0047 ipt, Ø50mm (5 Flutes), Wet (External and internal coolant) Workpiece: Ti-6Al-4V Machine: T50

Slotting Titanium Alloy (Internal Evaluation)

 $D.O.C. = 0.787" (0.4 \times DC)$

Stable Machining without Chip Clogging or Chattering


Cutting Conditions : Vc = 130 sfm, D.O.C. \times ae = 0.787" \times 1.97" (Slotting), fz = 0.003 ipt \emptyset 50mm (5 Flutes), Wet (External and internal coolant) Workpiece : Ti-6Al-4V Machine : BT50

Case Study Aerospace Part Ti-6Al-4V Vc = 180 sfm (n = 350 rpm)D.O.C. \times ae = 0.94" \times 0.63" fz = 0.004 ipt (Vf = 4.96 ipm)Wet (Internal coolant) MECHT50R-1711-3-4T-M BDMT170408ER-JS PR1535 (first stage) BDMT11T308ER-JS PR1535 (second and third stage) Cutting Efficiency **Cutting Efficiency** Vf = 4.96 ipm **MECHT** Vf = 3.30 ipm Competitor B MECHT showed good chip evacuation and stable machining even with increasing feed rate. Machining efficiency was 50% better that of the competitor with equivalent tool life. (User evaluation)

Recommended Cutting Conditions

Workpiece	Applications	Depth o	f Cut (in)	fz (ipt)	Recommended Insert Grade (Vc : sfm) MEGACOAT NANO			
		D.O.C.	ae		PR1535			
Titanium Alloy	Shouldering	~Length of Cut (APMX)	~0.5 DC	0.004 ~ 0.005 ~ 0.006	100 ~ 130 ~ 200			
(Ti-6Al-4V)	Slotting	~0.5 DC	1 DC	0.002 ~ 0.003 ~ 0.004	100 ~ 130 ~ 160			

MECHT

End Mill Dimensions

		S	es	ts	<u> </u>						Spare	Parts	Applicable Inserts		
Part Number	Stock	Flutes	Stag	Inser		Dime	ensions ((mm)		wing	Clamp Screw	Wrench		2nd Stage or Higher	
	žš	No. of	No. of	No. of	DC	DCON	LF	LH	APMX	Dra			1st Stage		
MECHT 32-S32-11-5-4T	•	4	5	20	32	32	140	55	46	Fig.1	SB-2555TRG	DTM-8	BDMT11T3**	*1 BDMT11T308**	

Shell Mill Dimensions

		Ñ	Si	rts											Sp	oare Parts		Applicable Inserts		
Part Number		Stock	: Flutes	Stages	Inse		Dimensions (mm)								Drawing	Clamp Screw	Wrench	Arbor Bolt		2.16
rarenamber	No. of		No.of	No. of	DC	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	KWW	APMX	Dra		Miles		1st Stage	2nd Stage or Higher	
MECHT	50R-1711-3-4T-M	•	4	3	12	50	27	20	14	55	24	7	12.4	34		SB-2555TRG	DTM-8	HH12X40		*1 BDMT11T308**
	50R-1711-4-5T-M	•	5	4	20	30	21	20	14	65	24	,	12.4	43	Fig. 2	SB-4070TRN	DTM-15	HH12X50	BDMT1704**	, POINTITION
MECHT	63R-17-4-5T-M	•	5	4	20	63	27	20	14	90	24	7	12.4	60	Fig.2	CD 4070TDN	DTM 15	HH12X65	DDWII 1704***	*1 DDMT170400**
	80R-17-4-6T-M	•	6	4	24	80	32	26	17	80	28	28 8	14.4	60		SB-4070TRN	DTM-15	HH16X65	-	*1BDMT170408**

^{*1.} Use inserts with Corner R of 0.8 or less for the 2nd or higher stages

Machining with coolant is recommended (Internal coolant pressure 1.5 MPa or higher)

•: Standard Stock

Applicable Inserts

In	sert	Part Number		D ir	nensions (r	mm)	An	gle	MEGACOAT NANO	
Right-Ha	and Shown	raitivumbei	W1	S	D1	L	RE	AS	AN	PR1535
	12	BDMT 11T302ER-JS	6.7	3.8	2.8	11.0	0.2	18°	13°	•
		11T304ER-JS					0.4			•
	(10°)	11T308ER-JS					0.8			•
	W1 S S	BDMT 170404ER-JS	9.6	4.9	4.4	17.0	0.4	18°	13°	•
Low Cutting Force	AN	170408ER-JS					0.8			•

General JT chipbreaker and notched insert (only if holder has an even number of inserts) can also be used. For more information, please contact your Kyocera sales representative.

●: Standard Stock

KYOCERA Precision Tools

102 Industrial Park Road Hendersonville, NC 28792 Customer Service | 800.823.7284 - Option 1 Technical Support | 800.823.7284 - Option 2

Coat anti-seize compound (P-37) thinly on the taper and the thread of the clamp screw when mounting inserts.